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Abstract. In this paper, we consider a general class of continuous

distributions given by 1- F(x)= [ah(x)+b] . A recurrence relation

for single higher moments of generalized order statistics from the
doubly truncated case of the above class is derived. Recurrence
relations for single higher moments of ordinary order statistics and .-
records (ordinary record values when k =1), have been obtained as
special cases from generalized order statistics. These results are
utilized to establish similar recurrence relations for Weibull, Pareto
and Power function distributions.
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1. Introduction

Recurrence relations for moments of generalized order statistics (gos's)
have been discussed by " among others. In ! some relations for
moments of gos's of a general class of continuous distributions have
obtained. In this paper we obtain a recurrence relation for single higher
moments of gos's in the case of doubly truncated distributions. Suppose
that the random variable X has a distribution function (df) of the
following class of absolutely continuous distribution:

F(x)=1-[ah(x)+b], a#0, c¢#0, a<x<p, (1.1)
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and probability density function ( pdf)
£(x) = —ach'(x)[ah(x)+b] . (1.2)
It is well known that the doubly truncated pdf, say f,(x), is defined

as
S ()

0-P’
where P=F(P)and O=F(Q,).

Ja(x)=

a<P<x<Q <p,

The df and pdf of the doubly truncated case of (1.1) and (1.2) are given
by
F(x)-P

Fd(x):Wa (1.3)
([ F(x) —ach'(x)
fd(x)—(Q_Pj (ah(x)+b}’ a<P<x<Q <p. (1.4)

2. Recurrence Relations for Single Moments of GOS'S

Let X

Ln,m.k 2

X X

and k£ are real numbers and £ >1).

ks X pnmi D€ 1 gos's from the pdf (1.2), (n>1,m

The pdfof X,, . 1s given by 1 as follows

o () = %g;l (FOF]" f(x). xez. 2.1)

where y is the domain on which f, ~ (x) is positive and
Coo=I1r. r=k+@-im+,
i=1

and, for 0 <z <1

n=-a-2""1/m+1), m=-1
gn(2) = {— In(1-z), m=—1



Recurrence Relations for Single Moments ... 81
The j” moment of the » * gos can be obtained, for j > 1, from (2.1), as
H = X il = 1) — [ A FONF@) f(x) dr. (22)

The j moment of ordinary order statistics (0os’s) and k-records can
be obtained, from (2.2) by putting m=0,k=1 and m=-1,k>1,
respectively.

A recurrence relation for higher moments of gos's can be obtained in
the following theorem.

Theorem 2.1

Let X be a r.v. with F,(x) defined on (7,Q,) by (1.3) then for real
numbers m,k with m>—-1,k>1 and integers r,j >1, the recurrence
relation

(- QEW (X, 0] EG(X,,,,0]). me
u? =T . 23)
La-0ep ., O Elo,, ). m=-

Jj-1

*__(ah(x)+b) and
x)

is satisfied, where G(x) =

W (x)=(ah(x)+b) G(x).
Proof

From (2.2) we can write

u :ﬁ [} e (o -

Integrating by parts, we obtain

H i = ((_1—)1C)' [ g R CNE ™ () e

+%F g (F, ()F, ()]



82 Bakheet N. Al-Matrafi and Taghreed M. Jawa

which can be written as

7 C 9 i - = a1
uh = [ g (F CONE, 0] £, ()

(r—2)!
erfl o j 1 r—1
b ] e I
or equivalently,
j j C, 2 o
Ry A A G G | (2.4)

Since’ Cr—l :err—Z , 7/r —|—}’n=k—l—(l/l—}")(l’}’l‘f-l)‘|‘I’}’l=7/r_1 —1 .

Eq.(2.4) can be rewritten as

WO =L [ g G F ) (0l (25)
rimm k ik |2 (I"—l)'
—0  ah(x)+b . .
making use of F,(x) = Q Iz + ekl () f,;(x) in (2.5), we obtain,
woo_ 0 —0,JC, L o e jl et
M H = iy 8 (FLGONE, ) e
_JC., o g o (ah(x)+b
T0) [, g (F,C)IF, ()] ( g de (x)dx, (2.6)
where Q, _1=0 . Since, (Q_}:?lfd (x) =1, we can
-P [ah(x)+b] [—ach'(x)]

rewrite (2.6) as

) ) — Qz 1 [© !
Y 2 F,(x F X
Mo T = An ¥ e R )

L (©-P) £,
Lah(x)+b] "~ ach'(x)
. 7/] ?(;) Ji x" g (G o1

5 ah(x)+b
ach'(x)

de (x)dx . (2.7)
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Let G(x)= ;,21) (ah(x)+b) , W(x)=G(x)(ah(x)+b) . Thus,
X
1 =T By g o F ) (o)
r;n,mk r=ln,m,k aC]/rr(l") R
_ er—l 9 r—1 'l 7=l
w1, e F T 1, (s,

or equivalently,

]—((1 - Q)E[W(Xr;n,m,k)]_ E[G(Xr;n,m,k)])’ m#* _1
D0 acy, )

L((1_Q)Z?I:I/V(‘X/r;n,m,k)]_EI:(_;(‘X/r;n,m,k )])’ m= _1
ack
as desired.

Remarks 2.2. One can note the following special cases

(1) The doubly truncated case of a distribution is the most general
case since it includes the right truncated, left truncated and non-truncated
distributions as special cases.

(2) In the left truncated (Q =1), Eq.(2.3) reduces to

a_C;}]/ E[G(Xr;n,m,k )] 2 m# _1
w - =T - 23)
_]E[G(Xr;n,m,k )] » m= -1
ack

(3) In the non-truncated case(Q =1,P =0), Eq.(2.3) reduces to

relation (2.8), which means that the relations in the left truncated and
non-truncated cases are similar in the form in spite of the difference in
their domains. Note that Eq.(2.8) coincides with the result obtained by .

(4) In the right truncated case (P =0) the recurrence relation is given
by Eq.(2.3).
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(5) In the case of oos's (m=0, k=1land y, =n—r+1), Eqs.(2.3)
and (2.8) are reduced, respectively, to

W = (a-gEwx,)]- Eleix, )
ac(n—-r+1)

u - =— =1 glex, )

ac(n—r+1)

(2.9)

(6) In the case of k-records (m=-1, k>1), Egs.(2.3) and (2.8),
respectively become,

)
Uk (r)

—u =L (-0, - Elex,,,))
ack

Ug (r-1)

Y7,
(2.10)

P :ﬁE[G(XUM)]

Uk (r) Uk (r=1)

Note that for £ =1, we obtain the orv's case.

3. Special Cases

In this section, three members of class (1.3) are used to illustrate the
derived relations in these cases. These members are Weibull, Pareto and
Power function distributions.

(1) Weibull Distribution

Choosing a=1,6=0,c =1, h(x) = e %" in (1.1) one has
F(x)=e "™ x>0,

—x/r WA

then, G(x)=

, W(x) =

—ox? :

p

The relation (2.8), reduces to
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) ) poy,

The relation (2.8), reduces to

é (J-pr) , m# -1
) ) p 7/}’ rin,m.k
‘Ll;(-;jn?m.k _ﬂffl);1.m,k = j *
(=p) -
L m=-1
pek yr:n,l

The relation (2.9), reduces to

R I P ( 0= Q)E[ XD

a pO(n—r+1)

0 _ J (-p)
e p@(n—r+1)

)]

Mo —H

The relation (2.10), reduces to
O o0 e ot
'uvim _'uu{m—u - pﬁk( U:(f -(- Q)E[ Ui € H}j’

wn __J 2
Uk (r-1) ka Upn

)

Uk (r)

w —u

The orv's case is obtained for £k =1.

. P
J ( fjn ” (1 Q)E[ rin,mk er;n,m,k:Dam;é_l

‘]Hk( = P) (1 Q)E|: rnmk . ’ki|J’m=_1

The exponential and Rayleigh distributions are obtained for the choice

p=1, and p =2, respectively.

(2) Pareto Distribution
Choosing a=1,b=0,c=1LAh(x)=x", in (L.1)

F(x)=x"",x>1 which is the Pareto df. Also one has G(x)=— al

j+
_xj p

W(x)=
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The relation (2.8), reduces to

L, ~a-0uln, ), me-

rin,mk
w0 P
’ur;n,m,k /ur—l;n,m,k _] i ()
J _(1— j+p - _
pk (’ur;n,m,k (1 Q)’ur;n,m,k )’ m 1

The relation (2.8), reduces to

S ,u(’)k, m#—1
; ; by,
u —ul) = ;
)
- , m=-1
prE

The relation (2.9), reduces to

I D _ (1= O+
b = i) (1 -a-0u ),
W _ 0 = J ()

'ur:n rlin p(l’l—l"-l—l) e

The relation (2.10), reduces to

‘u(j) —,U(j) :L(Iu(j) —(l—Q),U:T:) ) >

Uk (r) Uk (r-1) pk Uy (r)
W o_,0 . m
lLlUk(’) ’uuwfl) pk 'uukw'

The orv's case is obtained for k=1 .

(3) Power Function Distribution
Choosing a=-1,b=1Lc=1,h(x)=x", in (1.1) gives
J Jj=r

Jj-p _
F(x)zl—xp,ogxgl.HenceG(x)=u, W(x)=x .
p p

The relation (2.3), reduces to

that
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l( u” Q‘u(] p)) m#—1

rin,mk
o 0 _ P
rimm k ‘Llrfl;n,m,k - _j :
((1) —ou' p)) m=—1
pk rnmk rin,m,k

The relation (2.8), reduces to

—-J W

r:n mk m#—1
Doean =t
=/ , m#-—1
pk rin,m,k
The relation (2.9), reduces to
h_ 0 —J (-p)
)l =S - ou ).
W _ 0 = —J )
o o pn—-r+1)

The relation (2.10), reduces to

w\ _ .0 _ J( ) (-p) )
'Lluk(r) 'Lluk(;-fl) pk Uk (r) Q‘lek(r)

S ) Bl AT
/J(Jk(r) ’uuk(r—l) pk Ur(r)

Note that the orv's case is obtained for £k =1.
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