Some Remarks on Sections of a Fuzzy Matrix

F.I. SIDKY and E.G. EMAM

Dept. of Math., Faculty of Science, Zagazig University, Zagazig, Egypt.

ABSTRACT. The concept of sections of a fuzzy matrix was introduced by Kim & Roush. We study the relation between a fuzzy matrix and its sections. Also, we introduce the concept of α -irreflexive, strongly irreflexive and circular fuzzy matrix.

KEYWORDS. Fuzzy matrix, Boolean matrix, section of a fuzzy matrix, circular fuzzy matrix.

1. Introduction

A Boolean matrix is a matrix with elements each has value 0 or 1. A fuzzy matrix is a matrix with elements having values in the closed interval [0,1]. The concept of sections of a fuzzy matrix was introduced by Kim and Roush^[1].

In this paper, we show that many properties of a fuzzy matrix, such as reflexive, irreflexive, transitive, nilpotent, regular and others, can be extended to all its sections. We show also that some properties of the sections of a fuzzy matrix do not extend to the original fuzzy matrix, such as regularity property.

Moreover, we define some properties of a square fuzzy matrix, such as α -irreflexive, strongly irreflexive and circularity, and examine it throughout our results.

2. Preliminaries and Definitions

We shall begin with the following definitions.

Definition 2.1 [2-5]

The operations $+, \cdot, \leftarrow$ and - on [0,1] are defined as follows:

 $a + b = \max(a,b), \quad a \cdot b = \min(a,b),$

$$a \leftarrow b = \begin{cases} \text{if } a > b, \\ a & a \leq b, \end{cases} \qquad b \rightarrow a = a \leftarrow b,$$
$$a - b = \begin{cases} a & \text{if } a > b \\ 0 & \text{if } a \leq b. \end{cases}$$

where $a, b \in [0,1]$.

We shall write a b instead of $a \cdot b$.

Remark.

A fuzzy relation R from X to Y is defined to be fuzzy subset of $X \times Y$. If X and Y are finite, we put $X = \{x_1, ..., x_m\}$ and $Y = \{y_1, ..., y_n\}$ and $R(x_i, y_j) = r_{ij}(r_{ij} \in [0,1])$, $i \in I$ and $j \in J$, where $I = \{1, ..., m\}$ and $J = \{1, ..., n\}$. So, $R = [r_{ij}]$; *i.e.*, R is a fuzzy matrix. The composition of the fuzzy relations R and S on $X \times Y$ and $Y \times Z$, respectively, is defined to be a fuzzy relation R o S on $X \times Z$ such that R o $S(x, z) = \sup_{y \in Y} y \in Y$

min (R(x,y), S(y,z)). The equation $R \circ S = T$ of fuzzy relations is called fuzzy relation equation. The problem of fuzzy relation equation is "find R knowing S and T". In order to solve this problem, Sanchez^[6] introduced the operations \leftarrow and \rightarrow . Note that the equation $R \circ S = T$ can be written in fuzzy matrix form $[r_{ij}][s_{jk}] = [t_{ik}]$, where X and Y as above and $Z = \{z_1, ..., z_k\}$. The product of the fuzzy matrices is defined as in the crisp case with + and \cdot as in the above definition.

Definition 2.2 [2-5,7]

For fuzzy matrices $A = [a_{ij}] (m \times n)$, $B = [b_{ij}] (m \times p)$, $D = [d_{ij}] (p \times q)$, $G = [g_{ij}] (m \times n)$ and $R = [r_{ij}] (n \times n)$, the following operations are defined :

$$A + G = [a_{ij} + g_{ij}], \quad A \wedge G = [a_{ij} g_{ij}],$$
$$BD = [\sum_{k=1}^{p} b_{ik} d_{kj}], \quad A - G = [a_{ij} - g_{ij}],$$
$$B \leftarrow D = \prod_{k=1}^{p} (b_{ik} \leftarrow d_{kj})], \quad B \rightarrow D = \prod_{k=1}^{p} (b_{ik} \rightarrow d_{kj}),$$
$$(\text{where } \prod_{k=1}^{n} a_{k} = a_{1} a_{2} a_{3} \qquad a,$$

 $A' = [a_{ji}] \text{ (the transpose of A), } R^{k+1} = R^k R (k = 0, 1, 2, ...),$ $A/R = A - A R, \quad \Delta R = R - R', \quad \nabla R = R \wedge R',$ $A \leq G \text{ if and only if } a_{ii} \leq g_{ii} \text{ for all } i, j.$

Definition 2.3^[3,5,8,9]

An $n \times n$ fuzzy matrix R is called reflexive if and only if $r_{ii} = 1$ for all i = 1, 2, ..., n. It is called α -reflexive if and only if $r_{ii} \ge \alpha$ for all i = 1, 2, ..., n where $\alpha \in [0,1]$. It is called weakly reflexive if and only if if $r_{ii} \ge r_{ii}$ for all i, j = 1, ..., n.

Definition 2.4 [2-4,7,8,10]

An $n \times n$ fuzzy matrix R is called irreflexive if and only if $r_{ii} = 0$ for all i = 1, 2, ..., n.

Definition 2.5 [2,8,10]

An $n \times n$ fuzzy matrix S is called symmetric if and only if $s_{ij} = s_{ji}$ for all i, j = 1, 2, ..., n. It is called antisymmetric if and only if $S \wedge S' \leq I_n$, where I_n is the usual unit matrix.

Remark.

Note that the condition $S \wedge S' \leq I_n$ means that $s_{ij} \wedge s_{ji} = 0$ for all $i \neq j$ and $s_{ii} \leq 1$ for all *i*. So, if $s_{ij} = 1$, then $s_{ii} = 0$, which is the crisp case.

Lemma 2.6^[8]

Let A be an $m \times n$ fuzzy matrix. Then AA' is weakly reflexive and symmetric.

Proof

Let
$$S = [s_{ij}] = AA'$$
. Then $s_{ii} = \sum_{k=1}^{n} a_{ik} a_{ik} = \sum_{k=1}^{n} a_{ik} = a_{ik}$ for some *h*,

 $s_{ij} = \sum_{k=1}^{n} a_{ik} a_{jk} = a_{il} a_{jl}$ for some *l*. Therefore $s_{ij} = a_{il} a_{jl} \le a_{il} \le a_{ik} = s_i$ Hence *S*

is weakly reflexive. Since $s_{ij} = \sum_{k=1}^{n} a_{ik} a_{jk}$, $s_{ji} = \sum_{k=1}^{n} a_{jk} a_{ik}$, $s_{ij} = s_{ji}$ and so, S is symmetric.

Corollary 2.7

If the fuzzy matrix S is symmetric, then S^2 is weakly reflexive.

Remark 2.8

All the powers S^k ; k = 1, 2, ... of a symmetric fuzzy matrix S are also symmetric and weakly reflexive.

Definition 2.9 [2-4,7,10]

An $n \times n$ fuzzy matrix N is called nilpotent if and only if $N^n = 0$ (the zero matrix).

Remark

(1) Note that, if N is an $n \times n$ fuzzy matrix with $N^m = 0$ for some positive integer m, then N is nilpotent in the sense of the above definition; *i.e.*, $N^n = 0$ (see [10]).

(2) If $N^m = 0$ and $N^{m-1} \neq 0$, $1 \le m \le n$, then N is called nilpotent of degree m. Note that nilpotent of degree m is nilpotent.

Definition 2.10^[2-5,7,8,10,11]

An $n \times n$ fuzzy matrix E is called idempotent if and only if $E^2 = E$. It is called transitive if and only if $E^2 \leq E$. It is called compact if and only if $E^2 \geq E$.

Remark

If E is idempotent; *i.e.*, $E^2 = E$, then we have $E^3 = E^2 = E$ and $E^4 = E^2 = E$ and so on. This means that $E^p = E$ for all $p \ge 2$.

Proposition 2.11

Let E be an $n \times n$ fuzzy matrix. If E is transitive and reflexive, then E is idempotent.

Proof

Since we have E is a transitive fuzzy matrix, $E^2 \le E$. Now, we show that $E^2 \ge E$.

Let $E^2 = [e_{ij}^{(2)}]$. Then $e_{ij}^{(2)} = \sum_{k=1}^{n} e_{ik} e_{kj} \ge e_{ij} e_{ij} = e_{ij}$ (Since we have *E* is reflexive).

*

Proposition 2.12^[4]

Let N be an irreflexive and transitive fuzzy matrix. Then N is nilpotent.

Definition 2.13^[1,5]

An $m \times n$ fuzzy matrix A is called regular if and only if there exists an $n \times m$ fuzzy matrix G such that AGA = A. Such a fuzzy matrix G is called a generalized inverse or a g-inverse of A.

Remark

Note that G is not unique since it is not unique in the crisp case.

Definition 2.14^[8]

An $n \times n$ fuzzy matrix S is called similarity if and only if it is reflexive, symmetric and transitive.

3. Some Properties of Sections of Fuzzy Matrices

Definition 3.1^[1]

The section α of a fuzzy matrix A is a Boolean matrix, denoted by $A^{\alpha} = [a_{ij}^{\alpha}]$ such that $a_{ij}^{\alpha} = 1$ if $a_{ij} \ge \alpha$ and $a_{ij}^{\alpha} = 0$ if $a_{ij} < \alpha$. Where $\alpha \in [0,1]$.

Lemma 3.2

For $a, b \in [0,1]$, we have the followings :

- (1) $a \ge b \implies a^{\alpha} \ge b^{\alpha}$,
- (2) $(a b)^{\alpha} = a^{\alpha} b^{\alpha}$,
- $(3) (a + b)^{\alpha} = a^{\alpha} + b^{\alpha},$
- (4) $(a \rightarrow b)^{\alpha} \leq a^{\alpha} \rightarrow b^{\alpha}$,
- (5) $(a-b)^{\alpha} \ge a^{\alpha}-b^{\alpha}$.

Proof

(1) Obvious by definition.

(2) If $a b \ge \alpha$, then $(a b)^{\alpha} = 1$, $a^{\alpha} b^{\alpha} = 1$. If $a b < \alpha$, then $(a b)^{\alpha} = 0$. Since $a b < \alpha$, at least one of a and b is less than α . So, $a^{\alpha} b^{\alpha} = 0$. Hence $(a b)^{\alpha} = a^{\alpha} b^{\alpha}$.

(3) If $a + b \ge \alpha$, then $a \ge \alpha$ or $b \ge \alpha$ or both. So, $(a + b)^{\alpha} = a^{\alpha} + b^{\alpha} = 1$. If $a + b < \alpha$, then $a < \alpha$ and $b < \alpha$. So, $(a + b)^{\alpha} = a^{\alpha} + b^{\alpha} = 0$.

(4) If $b \ge a$, then $(a \to b)^{\alpha} = a^{\alpha} \to b^{\alpha} = 1$. If b < a, then $(a \to b)^{\alpha} = b^{\alpha}$ and $a^{\alpha} \to b^{\alpha} = \begin{cases} b^{\alpha} \\ 1 \end{cases}$. So, $(a \to b)^{\alpha} \le a^{\alpha} \to b^{\alpha}$. (5) If $b \ge a$, then $(a - b)^{\alpha} = 0^{\alpha} = \begin{cases} 0 & \text{if } \alpha > 0 \\ 1 & \text{if } \alpha = 0 \end{cases}$ and $a^{\alpha} - b^{\alpha} = 0$. If b < a,

then $(a-b)^{\alpha} = a^{\alpha} \ge a^{\alpha} - b^{\alpha}$. Hence $(a-b)^{\alpha} \ge a^{\alpha} - b^{\alpha}$.

Proposition 3.3

Let $A = [a_{ij}] (m \times n)$, $B = [b_{ij}] (m \times n)$, $R = [r_{ij}] (n \times n)$ and $C = [c_{ij}] (n \times p)$ be fuzzy matrices. Then we have the following :

(1) $A \ge B \Longrightarrow A^{\alpha} \ge B^{\alpha}$, (2) $(A \land B)^{\alpha} = A^{\alpha} \land B^{\alpha}$, (3) $(A + B)^{\alpha} = A^{\alpha} + B^{\alpha}$, (4) $(A \to C)^{\alpha} \le A^{\alpha} \to C^{\alpha}$, (5) $(A - B)^{\alpha} \ge A^{\alpha} - B^{\alpha}$, (6) $(A \ C)^{\alpha} = A^{\alpha} \ C^{\alpha}$, (7) $(A / R)^{\alpha} \ge A^{\alpha} / R^{\alpha}$, (8) $(A')^{\alpha} = (A^{\alpha})'$.

Proof

(1), (2), (3), (5) and (8) are clear.

(4) Let $D = A \rightarrow C$ and $F = A^{\alpha} \rightarrow C^{\alpha}$. Then

$$d_{ij} = \prod_{k=1}^{n} (a_{ik} \to c_{kj})^{\alpha} = (a_{ih} \to c_{hj})^{\alpha} \text{ for some } h$$

$$f_{ij} = \prod_{k=1}^{n} (a_{ik}^{\alpha} \to c_{kj}^{\alpha}) = a_{il}^{\alpha} \to c_{lj}^{\alpha} \quad \text{for some } l.$$

It follows from Lemma 3.2 that

$$f_{ij} \ge (a^{\alpha}_{ih} \rightarrow c^{\alpha}_{hj}) \ge (a_{ih} \rightarrow c_{hj})^{\alpha} = d_{ij}$$

(6) Let $G = (A C)^{\alpha}$ and $P = A^{\alpha} C^{\alpha}$ Then

$$g_{ij} = \sum_{k=1}^{n} a_{ik} c_{kj}^{\alpha} = (a_{ih} c_{hj})^{\alpha} = a_{ih}^{\alpha} c_{hj}^{\alpha}, \text{ for some } h.$$

$$p_{ij} = \sum_{k=1}^{n} a_{ik}^{\alpha} c_{kj}^{\alpha} = \sum_{k=1}^{n} (a_{ik} c_{kj})^{\alpha} = (\sum_{k=1}^{n} a_{ik} c_{kj})^{\alpha} = a_{ih}^{\alpha} c_{hi}^{\alpha} = g_{ij}$$
(7) Let $H = (A / R)^{\alpha}$. It follows from Lemma 3.2, that

$$h_{ij} = (a_{ij} - \sum_{k=1}^{n} a_{ik} r_{kj})^{\alpha} \ge a_{ij}^{\alpha} - (\sum_{k=1}^{n} a_{ik} k_{kj})^{\alpha}.$$

Thus
$$H \ge A^{\alpha} - (A R)^{\alpha} = A^{\alpha} - A^{\alpha} R^{\alpha} = A^{\alpha} / R^{\alpha}$$

Proposition 3.4

Let A and B be two $m \times n$ fuzzy matrices. Then for $\alpha_1, \alpha_2 \in [0,1]$ with $\alpha_1 \leq \alpha_2$ we have :

- (1) $(A + B)^{\alpha_2} \leq A^{\alpha_1} + B^{\alpha_2} \leq (A + B)^{\alpha_1}$
- (2) $(A \wedge B)^{\alpha_2} \leq A^{\alpha_1} \wedge B^{\alpha_2} \leq (A \wedge B)^{\alpha_1}$

Proof

(1)
$$(A + B)^{\alpha_2} = A^{\alpha_2} + B^{\alpha_2} \leq A^{\alpha_1} + B^{\alpha_2} \leq A^{\alpha_1} + B^{\alpha_1} = (A + B)^{\alpha_1}$$

(2) $(A \wedge B)^{\alpha_2} = A^{\alpha_2} \wedge B^{\alpha_2} \leq A^{\alpha_1} \wedge B^{\alpha_2} \leq A^{\alpha_1} \wedge B^{\alpha_1} = (A \wedge B)^{\alpha_1}$.

Remark 3.5

The above proposition can be generalized to a finite number n of fuzzy matrices as follows :

$$\sum_{i=1}^{n} A_{i} \sum_{i=1}^{n} A_{i}^{(\alpha_{i}; i=1, \dots, n)} \leq \sum_{i=1}^{n} A_{i}^{\alpha_{i}} \leq \left(\sum_{i=1}^{n} A_{i}\right)^{\min(\alpha_{i}; i=1, \dots, n)}$$

and

$$\left(\bigwedge_{i=1}^{n}A_{i}\right)^{\max(\alpha_{i};i=1,\dots,n)} \leq \bigwedge_{i=1}^{n}A_{i}^{\alpha_{i}} \leq \left(\bigwedge_{i=1}^{n}A_{i}\right)^{\min(\alpha_{i};i=1,\dots,n)}$$

Proposition 3.6

For an $n \times n$ fuzzy matrix A, we have

(1)
$$\Delta A^{\alpha} \leq (\Delta A)^{\alpha}$$

(2) $\nabla A^{\alpha} = (\nabla A)^{\alpha}$

Proof

(1)
$$\Delta A^{\alpha} = A^{\alpha} - (A^{\alpha})' = A^{\alpha} - (A')^{\alpha} \le (A - A')^{\alpha} = (\Delta A)^{\alpha}$$

(2) $\nabla A^{\alpha} = A^{\alpha} \wedge (A^{\alpha})' = A^{\alpha} \wedge (A')^{\alpha} = (A \wedge A')^{\alpha} = (\nabla A)^{\alpha}$.

The following theorem is useful for decomposition of fuzzy matrices into its sections.

Theorem 3.7^[9]

Any fuzzy matrix A can be decomposed in the form :

$$A = \sum_{\alpha} \alpha A^{\alpha} ; 0 < \alpha \leq 1$$

Where αA^{α} indicates that all the elements of the Boolean matrix A^{α} are multiplied by α .

Proof

Let $T = \sum_{\alpha} \alpha A$, *i.e.* $t_{ij} = \sum_{\alpha} \alpha a_{ij}^{\alpha}$. But $a_{ij}^{\alpha} = 0$ if $a_{ij} < \alpha$.

*

*

ж

Then
$$t_{ij} = \sum_{\alpha \leq a_{ii}} \alpha = a_{ij}$$
.

4. Relationship between a Fuzzy Matrix and Its Sections

Proposition 4.1

Let *R* be an $n \times n$ fuzzy matrix and α , $\delta \in [0,1]$ such that $\delta \leq \alpha$. Then :

(1) R is α -reflexive $\Rightarrow R^{\delta}$ is reflexive,

(2) R^{α} is reflexive $\Rightarrow R$ is α -reflexive.

Proof

(1) Suppose that R is α -reflexive, *i.e.*, $r_{ii} \ge \alpha$. Since we have $\delta \le \alpha$, $r_{ii} \ge \delta$ and so, $r_{ii}^{\delta} = 1$. Hence R^{δ} is reflexive for all $\delta \le \alpha$.

(2) Obvious from definition of α -reflexivity.

Corollary 4.2

R is reflexive if and only if R^{δ} is reflexive for all $\delta \in [0,1]$.

Proposition 4.3

Let R be an $n \times n$ fuzzy matrix. Then R is weakly reflexive if and only if all its sections are weakly reflexive.

Proof

First, suppose that R is weakly reflexive, *i.e.*, $r_{ii} \ge r_{ij}$. So that $r_{ii}^{\alpha} \ge r_{ij}^{\alpha}$ for every $\alpha \in [0,1]$. Hence R^{α} is weakly reflexive.

Second, suppose that R^{α} is weakly reflexive for every $\alpha \in [0,1]$, *i.e.*, $r_{ii}^{\alpha} \ge r_{ij}^{\alpha}$. For $\alpha = r_{ii}$ we get, $r_{ii}^{r_{ij}} \ge r_{ij}^{r_{ij}} = 1$. Therefore $r_{ii} \ge r_{ij}$ and hence R is weakly reflexive.

Now, we define an α -irreflexive and strongly irreflexive fuzzy matrix.

Definition 4.4

An $n \times n$ fuzzy matrix R is called α -irreflexive if and only if $r_{ii} \leq \alpha$ for all i = 1, 2, ..., n. It is called strongly irreflexive if and only if $r_{ii} \leq r_{ij}$ for all i, j = 1, 2, ..., n.

Remark 4.5

0-irreflexive means, in fact, irreflexive.

Proposition 4.6

Let R be an $n \times n$ fuzzy matrix and α , $\delta \in [0,1]$ such that $\alpha < \delta$. Then

(1) R is α -irreflexive $\Rightarrow R^{\alpha}$ is irreflexive,

(2) R^{α} is irreflexive $\Rightarrow R$ is α -irreflexive.

Proof

(1) Suppose that R is α -irreflexive. *i.e.*, $r_{ii} \leq \alpha$. We have $\alpha < \delta$ and so, $e_{ii} < \delta$,

i.e., R^{δ} is irreflexive.

(2) Obvious.

Corollary 4.7

Let R be an $n \times n$ fuzzy matrix. Then R is irreflexive if and only if R^{δ} is irreflexive for all $\delta \in [0,1]$.

*

ж

×

Proposition 4.8

Let R be an $n \times n$ fuzzy matrix. Then R is strongly irreflexive if and only if R^{α} is strongly irreflexive for all $\alpha \in [0,1]$.

Proof

Suppose that R is strongly irreflexive. *i.e.*, $r_{ii} \leq r_{ij}$ for all i, j = 1, 2, ..., n. So that $r_{ii}^{\alpha} \leq r_{ij}^{\alpha}$. Hence R^{α} is strongly irreflexive.

Conversely, suppose that R^{α} is strongly irreflexive for all $\alpha \in [0, 1]$. Then $r_{ii}^{\alpha} \leq r_{ij}^{\alpha}$. Taking $\alpha = r_{ii}$ we get $r_{ii}^{r_{ii}} \leq r_{ij}^{r_{ii}}$, *i.e.*, $1 \leq r_{ii}^{r_{ii}}$. Therefore, $r_{ii} \geq r_{ii}$.

Proposition 4.9

Let S be an $n \times n$ fuzzy matrix. Then S is symmetric if and only if all its sections are symmetric.

Proof

We have S is symmetric if and only if S = S' if and only if $S^{\alpha} = (S')^{\alpha} = (S^{\alpha})'$.

Proposition 4.10

A fuzzy matrix T is transitive if and only if all its sections are transitive.

Proof

We have T is transitive if and only if $T^2 \le T$ if and only if $(TT)^{\alpha} \le T^{\alpha}$ if and only if $(T^{\alpha})^2 \le T^{\alpha}$ if and only if T^{α} is transitive.

Propositions 2.11, 4.1 and 4.10 suggest that if a fuzzy matrix E is transitive and reflexive (idempotent), then all its sections are also transitive and reflexive (idempotent). This property will apply to idempotent fuzzy matrices in the following proposition.

Proposition 4.11^[11]

A fuzzy matrix E is idempotent if and only if all its sections are.

Proof

Similar to proof of proposition 4.10.

Proposition 4.12

A fuzzy matrix N is nilpotent if and only if N^{α} , $\alpha \in [0,1]$ is nilpotent.

Proof

Follows directly from $(N^n)^{\alpha} = (N^{\alpha})^n$.

Definition 4.13

An $n \times n$ fuzzy matrix C is called circular if and only if $(C^2)' \leq C$, or more explicitly, $c_{jk} c_{ki} \leq c_{ij}$ for every k = 1, 2, ..., n.

Proposition 4.14

An $n \times n$ fuzzy matrix C is circular and reflexive if and only if it is similarity.

Proof

Suppose that C is circular and reflexive. Then $c_{ij} = c_{ij} c_{jj} \le c_{ji}$. Also, $c_{ji} = c_{ji} c_{ii} \le c_{ij}$. So, $c_{ij} = c_{ji}$ and hence C is symmetric.

Also, we have $c_{ii}^{(2)} \leq c_{ii} = c_{ii}$, *i.e.*, *C* is transitive. Hence *C* is similarity.

Conversely, suppose that C is similarity. Then $c_{ij}^{(2)} \leq c_{ij} = c_{ji}$. Hence C is circular.

Proposition 4.15

An $n \times n$ fuzzy matrix C is circular if and only if all its sections are.

Proof

We have C is circular if and only if $(C^2)' \leq C$ if and only if $((C^2)')^{\alpha} \leq C^{\alpha}$ if and only if $((C^2)^{\alpha})' \leq C^{\alpha}$ if and only if $((C^{\alpha})^2)' \leq C^{\alpha}$.

Proposition 4.16

Let C be an $n \times n$ fuzzy matrix. Then C is compact if and only if all its sections are.

Proof

We have C is compact if and only if $C^2 \ge C$ if and only if $(C^2)^{\alpha} \ge C^{\alpha}$ if and only if $(C^{\alpha})^2 \ge C^{\alpha}$.

Proposition 4.17

Let A be a regular fuzzy matrix with a g-inverse G, then A^{α} is regular with a g-inverse G^{α} for every $\alpha \in [0,1]$.

Proof

Since A is regular with g-inverse G, we have A = A G A. Then $A^{\alpha} = (A G A)^{\alpha} = A^{\alpha} G^{\alpha} A^{\alpha}$. Hence A^{α} is regular and G^{α} is a g-inverse of it.

The following example shows that the converse of the above proposition is not true in general.

*

*

*

Example 4.18

We consider the fuzzy matrix.

$$A = \begin{array}{ccc} 0.7 & 0.3 & 0 \\ 0.3 & 0.7 & 0.3 \\ 0.3 & 0.3 & 0.7 \end{array}$$

Let the two sections

$$A^{0.3} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \text{ and } A^{0.7} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$G = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \text{ and } I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ respectively. Since } A^{0.3} > A^{0.3}$$
we have $G > I$; *i.e.*, G is reflexive

we have G > T; *i.e.*, G is relievive

So,
$$A^{0.3} G A^{0.3} =$$
, wich contradicts the regularity of $A^{0.3}$.

Hence A is not regular.

References

- [1] Kim, K.H. and Roush, F.W., Generalized fuzzy matrices, Fuzzy Sets and Systems 4: 293-315 (1980).
- [2] Hashimoto, H., Canonical form of a transitive fuzzy matrix, Fuzzy Sets and Systems 11: 157-162 (1983).
- [3] Hashimoto, H., Decomposition of Fuzzy Matrices, Siam J. Alg. Disc. Math. 6: 32-38 (1985).
- [4] Hashimoto, H., Reduction of a Fuzzy Retrieval Model, Information Sciences 27: 133-140 (1982).
- [5] Hashimoto, H., Subinverses of fuzzy matrices, Fuzzy Sets and Systems 12: 155-168 (1984).
- [6] Sanchez, E., Resolution of composite fuzzy relation equations, Inform and Control 30: 38-48 (1976).
- [7] Hashimoto, H., Reduction of a Nilpotent Fuzzy Matrix, Information Sciences 27: 233-243 (1982).
- [8] Dubois, D. and Prade, H., Fuzzy sets and Systems, Theory and Application, Academic Press, New York (1980).
- [9] Kaufmann, A., Introduction to the Theory of Fuzzy Subjects, Academic Press, New York (1975).
- [10] Hashimoto, H., Szpilarajn's theorem on fuzzy orderings, Fuzzy Sets and Systems 10: 101-108 (1983).
- [11] Hashimoto, H., Convergence of powers of a fuzzy transitive matrix, Fuzzy Sets and Systems 9: 153-160 (1983).

154

بعض الملحوظات على مقاطع المصفوفة الفازية ف . صدقي و إ . ج . إمام قسم الرياضيات ، كلية العلوم ، جامعة الزقازيق ، الزقازيق ، مصر المستخلص . فكرة مقاطع المصفوفة الفازية استنتجها كيم وروش عام ١٩٨٠م . ويتناول هذا البحث دراسة العلاقة بين المصفوفة الفازية ومقاطعها ، كما نُعرف الأفكار التالية للمصفوفة الفازية :

نعطي في القسم الأول من هذا المقال ، مقدمة نُعرَّف فيها المصفوفة الفازية والفرق بينها وبين المصفوفة البولينية Boolean matrix ، ونشير إلى ما سوف ندرسه في هذا البحث .

وفي القسم الثاني ، نذكر بعض التعاريف والنظريات الأساسية الموجودة في المراجع والتي سوف نستخدمها خلال هذا المقال .

في القسم الثالث ، نقدم العديد من خصائص المصفوفات الفازية (مع البرهان) ومدى انتقال هذه الخصائص إلى المقاطع .

في القسم الرابع ، نبرهن العديد من العلاقات بين المصفوفة ومقاطعها من حيث الأفكار المختلفة المعرفة للمصفوفة الفازية ، مثل الانعكاس والتهاثل والنقل وضد الانعكاس وضد التهاثل .