Some Remarks on Sections of a Fuzzy Matrix

F.I. SIDKY and E.G. EMAM
Dept. of Math.; Faculty of Science, Zagazig University, Zagazazig, Egypt

Abstract

The concept of sections of a fuzzy matrix was introduced by Kim \& Roush. We study the relation between a fuzzy matrix and its sections. Also, we introduce the concept of α-irreflexive, strongly irreflexive and circular fuzzy matrix.

Keywords. Fuzzy matrix, Boolean matrix, section of a fuzzy matrix, circular fuzzy matrix.

1. Introduction

A Boolean matrix is a matrix with elements each has value 0 or 1 . A fuzzy matrix is a matrix with elements having values in the closed interval $[0,1]$. The concept of sections of a fuzzy matrix was introduced by Kim and Roush ${ }^{[1]}$.

In this paper, we show that many properties of a fuzzy matrix, such as reflexive, irreflexive, transitive, nilpotent, regular and others, can be extended to all its sections. We show also that some properties of the sections of a fuzzy matrix do not extend to the original fuzzy matrix, such as regularity property.

Moreover, we define some properties of a square fuzzy matrix, such as α-irreflexive, strongly irreflexive and circularity, and examine it throughout our results.

2. Preliminaries and Definitions

We shall begin with the following definitions.

Definition $2.1{ }^{[2-5]}$

The operations $+, \cdot, \leftarrow$ and - on $[0,1]$ are defined as follows

$$
a+\boldsymbol{b}=\max (a, b), \quad a \cdot b=\min (a, b)
$$

$$
\begin{aligned}
& a \leftarrow b=\left\{\begin{array}{ll}
& \text { if } a>b, \\
a & a \leqslant b,
\end{array} \quad b \rightarrow a=a \leftarrow b,\right. \\
& a-b= \begin{cases}a & \text { if } a>b \\
0 & \text { if } a \leqslant b .\end{cases}
\end{aligned}
$$

where $a, b \in[0,1]$.
We shall write $a b$ instead of $a \cdot b$.

Remark.

A fuzzy relation R from X to Y is defined to be fuzzy subset of $X \times Y$. If X and Y are finite, we put $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ and $R\left(x_{i}, y_{j}\right)=r_{i j}\left(r_{i j} \in[0,1]\right)$, $i \in I$ and $j \in J$, where $I=\{1, \ldots, m\}$ and $J=\{1, \ldots, n\}$. So, $R=\left[r_{i j}\right] ;$ i.e., R is a fuzzy matrix. The composition of the fuzzy relations R and S on $X \times Y$ and $Y \times Z$, respectively, is defined to be a fuzzy relation R o S on $X \times Z$ such that R o $S(x, z)=\operatorname{Sup}_{y \in Y}$ $\min (R(x, y), S(y, z))$. The equation R o $S=T$ of fuzzy relations is called fuzzy relation equation. The problem of fuzzy relation equation is "find R knowing S and T ". In order to solve this problem, Sanchez ${ }^{[6]}$ introduced the operations \leftarrow and \rightarrow. Note that the equation R o $S=T$ can be written in fuzzy matrix form $\left[r_{i j}\right]\left[s_{j k}\right]=\left[t_{i k}\right]$, where X and Y as above and $Z=\left\{z_{1}, \ldots, z_{k}\right\}$. The product of the fuzzy matrices is defined as in the crisp case with + and \cdot as in the above definition.

Definition $2.2{ }^{[2-5,7]}$
For fuzzy matrices $A=\left[a_{i j}\right](m \times n), B=\left[b_{i j}\right](m \times p), \mathrm{D}=\left[d_{i j}\right](p \times q), G=\left[g_{i j}\right]$ ($m \times n$) and $R=\left[r_{i j}\right](n \times n)$, the following operations are defined :

$$
\begin{gathered}
A+G=\left[a_{i j}+g_{i j}\right], \quad \mathbf{A} \wedge G=\left[a_{i j} g_{i j}\right], \\
B D=\left[\sum_{k=1}^{\mathrm{p}} b_{i k} d_{k j}\right], \quad A-G=\left[a_{i j}-g_{i j}\right] \\
\left.B \leftarrow D=\prod_{k=1}^{p}\left(b_{i k} \leftarrow d_{k j}\right)\right], \quad B \rightarrow D=\prod_{k=1}^{p}\left(b_{i k} \rightarrow d_{k j}\right.
\end{gathered}
$$

(where $\prod_{k=1}^{n} a_{k}=a_{1} a_{2} a_{3} \quad a$,
$A^{\prime}=\left[a_{j i}\right]$ (the transpose of $\left.A\right), R^{k+1}=R^{k} R(k=0,1,2, \ldots)$,
$A / R=A-A R, \quad \Delta R=R-R^{\prime}, \quad \nabla R=R \wedge R^{\prime}$,
$A \leqslant G$ if and only if $a_{i j} \leqslant g_{i j}$ for all i, j.
Definition $2.3{ }^{[3,5,8,9]}$
An $n \times n$ fuzzy matrix R is called reflexive if and only if $r_{i i}=1$ for all $i=1,2, \ldots n$. It is called α-reflexive if and only if $r_{i i} \geqslant \alpha$ for all $i=1,2, \ldots n$ where $\alpha \in[0,1]$. It is called weakly reflexive if and only if if $r_{i i} \geqslant r_{i j}$ for all $\mathrm{i}, \mathrm{j}=1, \ldots n$.
Definition $2.4{ }^{[2-4,7,8,10]}$
An $n \times \dot{n}$ fuzzy matrix R is called irreflexive if and only if $r_{i i}=0$ for all $i=1,2, \ldots n$.

Definition $2.5^{[2,8,10]}$

An $n \times n$ fuzzy matrix S is called symmetric if and only if $s_{i j}=s_{j i}$ for all i, $j=1,2, \ldots n$. It is called antisymmetric if and only if $S \wedge S^{\prime} \leqslant I_{n}$, where I_{n} is the usual unit matrix.

Remark.

Note that the condition $S \wedge S^{\prime} \leqslant I_{n}$ means that $s_{i j} \wedge s_{j i}=0$ for all $i \neq j$ and $s_{i i} \leqslant 1$ for all i. So, if $s_{i j}=1$, then $s_{j i}=0$, which is the crisp case.

Lemma $2.6^{[8]}$

Let A be an $m \times n$ fuzzy matrix. Then AA^{\prime} is weakly reflexive and symmetric.

Proof

Let $S=\left[s_{i j}\right]=A A^{\prime}$. Then $s_{i i}=\sum_{k=1}^{n} a_{i k} a_{i k}=\sum_{k=1}^{n} a_{i k}=a_{i h}$ for some h, $s_{i j}=\sum_{k=1}^{n} a_{i k} a_{j k}=a_{i l} a_{j l}$ for some l. Therefore $s_{i j}=a_{i l} a_{j l} \leqslant a_{i l} \leqslant a_{i h}=s_{i}$ Hence S is weakly reflexive. Since $s_{i j}=\sum_{k=1}^{n} a_{i k} a_{j k}, s_{i j}=\sum_{k=1}^{n} a_{j k} a_{i k}, s_{i j}=s_{j i}$ and so, S is symmetric.

Corollary 2.7

If the fuzzy matrix S is symmetric, then S^{2} is weakly reflexive.

Remark 2.8

All the powers $S^{k} ; k=1,2, \ldots$ of a symmetric fuzzy matrix S are also symmetric and weakly reflexive.

Definition $2.9{ }^{[2-4,7,10]}$

An $n \times n$ fuzzy matrix N is called nilpotent if and only if $N^{n}=0$ (the zero matrix).

Remark

(1) Note that, if N is an $n \times n$ fuzzy matrix with $N^{m}=0$ for some positive integer m, then N is nilpotent in the sense of the above definition; i.e., $N^{m}=0$ (see [10]).
(2) If $N^{m}=0$ and $N^{m-1} \neq 0,1 \leqslant m \leqslant n$, then N is called nilpotent of degree m. Note that nilpotent of degree m is nilpotent.

Definition $2.10{ }^{[2-5,7,8,10,11]}$

An $n \times n$ fuzzy matrix E is called idempotent if and only if $E^{2}=E$. It is called transitive if and only if $E^{2} \leqslant E$. It is called compact if and only if $E^{2} \geqslant E$.

Remark

If E is idempotent; i.e., $E^{2}=E$, then we have $E^{3}=E^{2}=E$ and $E^{4}=E^{2}=E$ and so on. This means that $E^{p}=E$ for all $p \geqslant 2$.

Proposition 2.11

Let E be an $n \times n$ fuzzy matrix. If E is transitive and reflexive, then E is idempotent.

Proof
Since we have E is a transitive fuzzy matrix, $E^{2} \leqslant E$. Now, we show that $E^{2} \geqslant E$. Let $E^{2}=\left[e_{i j}^{(2)}\right]$. Then $e_{i j}^{(2)}=\sum_{k=1}^{n} e_{i k} e_{k j} \geqslant e_{j j} e_{i j}=e_{i j}$ (Since we have E is reflexive).

Proposition 2.12 ${ }^{[4]}$

Let N be an irreflexive and transitive fuzzy matrix. Then N is nilpotent.
Definition $2.13{ }^{[1,5]}$
An $m \times n$ fuzzy matrix A is called regular if and only if there exists an $n \times m$ fuzzy matrix G such that $A G A=A$. Such a fuzzy matrix G is called a generalized inverse or a g-inverse of A.

Remark

Note that G is not unique since it is not unique in the crisp case.

Definition $2.14{ }^{[8]}$

An $n \times n$ fuzzy matrix S is called similarity if and only if it is reflexive, symmetric and transitive.

3. Some Properties of Sections of Fuzzy Matrices

Definition $3.1{ }^{[1]}$

The section α of a fuzzy matrix A is a Boolean matrix, denoted by $A^{\alpha}=\left[a_{i j}^{\alpha}\right]$ such that $a_{i j}^{\alpha}=1$ if $a_{i j} \geqslant \alpha$ and $a_{i j}^{\alpha}=0$ if $a_{i j}<\alpha$.
Where $\alpha \in[0,1]$.

Lemma 3.2

For $a, b \in[0,1]$, we have the followings :
(1) $a \geqslant b \Rightarrow a^{\alpha} \geqslant b^{\alpha}$,
(2) $(a b)^{\alpha}=a^{\alpha} b^{\alpha}$,
(3) $(a+b)^{\alpha}=a^{\alpha}+\dot{b}^{\alpha}$,
(4) $(a \rightarrow b)^{\alpha} \leqslant a^{\alpha} \rightarrow b^{\alpha}$,
(5) $(a-b)^{\alpha} \geqslant a^{\alpha}-b^{\alpha}$.

Proof

(1) Obvious by definition.
(2) If $a \cdot b \geqslant \alpha$, then $(a b)^{\alpha}=1, a^{\alpha} b^{\alpha}=1$. If $a b<\alpha$, then $(a b)^{\alpha}=0$. Since $a b<\alpha$, at least one of a and b is less than α. So, $a^{\alpha} b^{\alpha}=0$. Hence $(a b)^{\alpha}=a^{\alpha} b^{\alpha}$.
(3) If $a+b \geqslant \alpha$, then $a \geqslant \alpha$ or $b \geqslant \alpha$ or both. So, $(a+b)^{\alpha}=a^{\alpha}+b^{\alpha}=1$. If $a+b<\alpha$, then $a<\alpha$ and $b<\alpha$. So, $(a+b)^{\alpha}=a^{\alpha}+b^{\alpha}=0$.
(4) If $b \geqslant a$, then $(a \rightarrow b)^{\alpha}=a^{\alpha} \rightarrow b^{\alpha}=1$. If $b<a$, then $(a \rightarrow b)^{\alpha}=b^{\alpha}$ and $a^{\alpha} \rightarrow b^{\alpha}=\left\{\begin{array}{l}\mathbf{b}^{\alpha} \\ 1\end{array}\right.$. So, $(a \rightarrow b)^{\alpha} \leqslant a^{\alpha} \rightarrow b^{\alpha}$.
(5) If $b \geqslant a$, then $(a-b)^{\alpha}=0^{\alpha}=\left\{\begin{array}{ll}0 & \text { if } \alpha>0 \\ 1 & \text { if } \alpha=0\end{array}\right.$ and $a^{\alpha}-b^{\alpha}=0$. If $b<a$, then $(a-b)^{\alpha}=a^{\alpha} \geqslant a^{\alpha}-b^{\alpha}$. Hence $(a-b)^{\alpha} \geqslant a^{\alpha}-b^{\alpha}$.

Proposition 3.3

Let $A=\left[a_{i j}\right](m \times n), B=\left[b_{i j}\right](m \times n), R=\left[r_{i j}\right](n \times n)$ and $C=\left\{c_{i j}\right](n \times p)$ be fuzzy matrices. Then we have the following :
(1) $A \geqslant B \Rightarrow A^{\alpha} \geqslant B^{\alpha}$,
(2) $(A \wedge B)^{\alpha}=A^{\alpha} \wedge B^{\alpha}$,
(3) $(A+B)^{\alpha}=A^{\alpha}+B^{\alpha}$,
(4) $(A \rightarrow C)^{\alpha} \leqslant A^{\alpha} \rightarrow C^{\alpha}$,
(5) $(A-B)^{\alpha} \geqslant A^{\alpha}-B^{\alpha}$,
(6) $(A C)^{\alpha}=A^{\alpha} C^{\alpha}$,
(7) $(A / R)^{\alpha} \geqslant A^{\alpha} / R^{\alpha}$,
(8) $\left(A^{\prime}\right)^{\alpha}=\left(A^{\alpha}\right)^{\prime}$.

Proof

(1), (2), (3), (5) and (8) are clear.
(4) Let $D=A \rightarrow C$ and $F=A^{\alpha} \rightarrow C^{\alpha}$. Then

$$
\begin{aligned}
& \left.d_{i j}=\prod_{k=1}^{n}\left(a_{i k} \rightarrow c_{k j}\right)\right)^{\alpha}=\left(a_{i h} \rightarrow c_{h j}\right)^{\alpha} \quad \text { for some } h . \\
& f_{i j}=\prod_{k=1}\left(a_{i k}^{\alpha} \rightarrow c_{k j}^{\alpha}\right)=a_{i l}^{\alpha} \rightarrow c_{l j}^{\alpha} \quad \text { for some } l .
\end{aligned}
$$

It follows from Lemma 3.2 that

$$
f_{i j} \geqslant\left(a_{i h}^{\alpha} \rightarrow c_{h j}^{\alpha}\right) \geqslant\left(a_{i h} \rightarrow c_{h j}\right)^{\alpha}=d_{i}
$$

(6) Let $G=(A C)^{\alpha}$ and $P=A^{\alpha} C^{\alpha}$. Then

$$
\begin{aligned}
& \left.g_{i j}=\sum_{k=1}^{n} a_{i k} c_{k j}\right)^{\alpha}=\left(a_{i h} c_{h j}\right)^{\alpha}=a_{i h}^{\alpha} c_{h j}^{\alpha}, \text { for some } h . \\
& p_{i j}=\sum_{k=1}^{n} a_{i k}^{\alpha} c_{k j}^{\alpha}=\sum_{k=1}^{n}\left(a_{i k} c_{k j}\right)^{\alpha}=\left(\sum_{k=1}^{n} a_{i k} c_{k j}\right)^{\alpha}=a_{i h}^{\alpha} c_{h i}^{\alpha}=g_{i j}
\end{aligned}
$$

(7) Let $H=(A / R)^{\alpha}$. It follows from Lemma 3.2, that

$$
h_{i j}=\left(a_{i j}-\sum_{k=1}^{n} a_{i k} r_{k j}\right)^{\alpha} \geqslant a_{i j}^{\alpha}-\left(\sum_{k=1}^{n} a_{i k} k_{k j}\right)^{\alpha}
$$

Thus $H \geqslant A^{\alpha}-(A R)^{\alpha}=A^{\alpha}-A^{\alpha} R^{\alpha}=A^{\alpha} / R^{\alpha}$

Proposition 3.4

Let A and B be two $m \times n$ fuzzy matrices. Then for $\alpha_{1}, \alpha_{2} \in[0,1]$ with $\alpha_{1} \leqslant \alpha_{2}$ we have :
(1) $(A+B)^{\alpha_{2}} \leqslant A^{\alpha_{1}}+B^{\alpha_{2}} \leqslant(A+B)^{\alpha_{1}}$
(2) $(A \wedge B)^{\alpha_{2}} \leqslant A^{\alpha_{1}} \wedge B^{\alpha_{2}} \leqslant(A \wedge B)^{\alpha_{1}}$

Proof

(1) $(A+B)^{\alpha_{2}}=A^{\alpha_{2}}+B^{\alpha_{2}} \leqslant A^{\alpha_{1}}+B^{\alpha_{2}} \leqslant A^{\alpha_{1}}+B^{\alpha_{1}}=(A+B)^{\alpha_{1}}$
(2) $(A \wedge B)^{\alpha_{2}}=A^{\alpha_{2}} \wedge B^{\alpha_{2}} \leqslant A^{\alpha_{1}} \wedge B^{\alpha_{2}} \leqslant A^{\alpha_{1}} \wedge B^{\alpha_{1}}=(A \wedge B)^{\alpha_{1}}$.

Remark 3.5

The above proposition can be generalized to a finite number n of fuzzy matrices as follows :

$$
\left.\sum_{i=1}^{n} A_{i}\right)^{\max \left(\alpha_{i} ; i=1, \quad n\right)} \leqslant \sum_{i=1}^{n} A_{i}^{\alpha_{i}} \leqslant\left(\sum_{i=1}^{n} A_{i}\right)^{\min \left(\alpha_{i} ; i=\right.}
$$

and

$$
\left.\left(\bigwedge^{n} A_{i}\right)^{\max \left(\alpha_{i} ; i=1,\right.} \quad{ }^{n}\right) \leqslant \bigwedge_{i=1}^{n} A_{i}^{\alpha_{i}} \leqslant\left(\bigwedge_{i=1}^{n} A_{i}\right)^{\min \left(\alpha_{i} ; i=\right.}
$$

Proposition 3.6

For an $n \times n$ fuzzy matrix A, we have
(1) $\Delta A^{\alpha} \leqslant(\Delta A)^{\alpha}$
(2) $\nabla A^{\alpha}=(\nabla A)^{\alpha}$

Proof

(1) $\Delta A^{\alpha}=A^{\alpha}-\left(A^{\alpha}\right)^{\prime}=A^{\alpha}-\left(A^{\prime}\right)^{\alpha} \leqslant\left(A-A^{\prime}\right)^{\alpha}=(\Delta A)^{\alpha}$.
(2) $\nabla A^{\alpha}=A^{\alpha} \wedge\left(A^{\alpha}\right)^{\prime}=A^{\alpha} \wedge\left(A^{\prime}\right)^{\alpha}=\left(A \wedge A^{\prime}\right)^{\alpha}=(\nabla A)^{\alpha}$.

The following theorem is useful for decomposition of fuzzy matrices into its sections.

Theorem $3.7^{[9]}$

Any fuzzy matrix A can be decomposed in the form :

$$
A=\sum_{\alpha} \alpha A^{\alpha} ; 0<\alpha \leqslant 1
$$

Where αA^{α} indicates that all the elements of the Boolean matrix A^{α} are multiplied by α.

Proof
Let $T=\sum_{\alpha} \alpha A$, i.e. $t_{i j}=\sum_{\alpha} \alpha a_{i j}^{\alpha} . \quad$ But $a_{i j}^{\alpha}=0$ if $a_{i j}<\alpha$.

Then $t_{i j}=\sum_{\alpha \leqslant a_{i j}} \alpha=a_{i j}$

4. Relationship between a Fuzzy Matrix and Its Sections

Proposition 4.1

Let R be an $n \times n$ fuzzy matrix and $\alpha, \delta \in[0,1]$ such that $\delta \leqslant \alpha$. Then :
(1) R is α-reflexive $\Rightarrow R^{\delta}$ is reflexive,
(2) R^{α} is reflexive $\Rightarrow R$ is α-reflexive.

Proof

(1) Suppose that R is α-reflexive, i.e., $r_{i i} \geqslant \alpha$. Since we have $\delta \leqslant \alpha, r_{i i} \geqslant \delta$ and so, $r_{i i}^{\delta}=1$. Hence R^{δ} is reflexive for all $\delta \leqslant \alpha$.
(2) Obvious from definition of α-reflexivity.

Corollary 4.2

R is reflexive if and only if R^{δ} is reflexive for all $\delta \in[0,1]$.

Proposition 4.3

Let R be an $n \times n$ fuzzy matrix. Then R is weakly reflexive if and only if all its sections are weakly reflexive.

Proof

First, suppose that R is weakly reflexive, i.e., $r_{i i} \geqslant r_{i j}$. So that $r_{i i}^{\alpha} \geqslant r_{i j}^{\alpha}$ for every $\alpha \epsilon$ [0,1$]$. Hence R^{α} is weakly reflexive.

Second, suppose that R^{α} is weakly reflexive for every $\alpha \in[0,1]$, i.e., $r_{i i}^{\alpha} \geqslant r_{i j}^{\alpha}$. For $\alpha=r_{i j}$ we get, $r_{i i}^{r_{i j}} \geqslant r_{i j}^{r_{i j}}=1$. Therefore $r_{i i} \geqslant r_{i j}$ and hence R is weakly reflexive.
*
Now, we define an α-irreflexive and strongly irreflexive fuzzy matrix.

Definition 4.4

An $n \times n$ fuzzy matrix R is called α-irreflexive if and only if $r_{i i} \leqslant \alpha$ for all $i=$ $1,2, \ldots n$. It is called strongly irreflexive if and only if $r_{i i} \leqslant r_{i j}$ for all $i, j=1,2, \ldots n$.

Remark 4.5

0 -irreflexive means, in fact, irreflexive.

Proposition 4.6

Let R be an $n \times n$ fuzzy matrix and $\alpha, \delta \in[0,1]$ such that $\alpha<\delta$. Then
(1) R is α-irreflexive $\Rightarrow R^{\alpha}$ is irreflexive,
(2) R^{α} is irreflexive $\Rightarrow R$ is α-irreflexive.

Proof
(1) Suppose that R is α-irreflexive. i.e., $r_{i i} \leqslant \alpha$. We have $\alpha<\delta$ and so, $e_{i i}<\delta$,
i.e., R^{δ} is irreflexive
(2) Obvious.

Corollary 4.7

Let R be an $n \times n$ fuzzy matrix. Then R is irreflexive if and only if R^{δ} is irreflexive for all $\delta \in[0,1]$.

Proposition 4.8

Let R be an $n \times n$ fuzzy matrix. Then R is strongly irreflexive if and only if R^{α} is strongly irreflexive for all $\alpha \in[0,1]$.

Proof

Suppose that R is strongly irreflexive. i.e., $r_{i i} \leqslant r_{i j}$ for all $i, j=1,2, \ldots n$. So that $r_{i i}^{\alpha} \leqslant r_{i j}^{\alpha}$. Hence R^{α} is strongly irreflexive.

Conversely, suppose that R^{α} is strongly irreflexive for all $\alpha \in[0,1]$. Then $r_{i i}^{\alpha} \leqslant r_{i j}^{\alpha}$. Taking $\alpha=r_{i i}$ we get $r_{i i}^{r_{i i}} \leqslant r_{i j}^{r_{i i}}$, i.e., $1 \leqslant r_{i j}^{r_{i j}}$. Therefore, $r_{i j} \geqslant r_{i i}$.
*

Proposition 4.9

Let S be an $n \times n$ fuzzy matrix. Then S is symmetric if and only if all its sections are symmetric.

Proof

We have S is symmetric if and only if $S=S^{\prime}$ if and only if $S^{\alpha}=\left(S^{\prime}\right)^{\alpha}=\left(S^{\alpha}\right)^{\prime}$.
*

Proposition 4.10

A fuzzy matrix T is transitive if and only if all its sections are transitive.

Proof

We have T is transitive if and only if $T^{2} \leqslant T$ if and only if $(T T)^{\alpha} \leqslant T^{\alpha}$ if and only if $\left(T^{\alpha}\right)^{2} \leqslant T^{\alpha}$ if and only if T^{α} is transitive.

Propositions 2.11, 4.1 and 4.10 suggest that if a fuzzy matrix E is transitive and reflexive (idempotent), then all its sections are also transitive and reflexive (idempotent). This property will apply to idempotent fuzzy matrices in the following proposition.

Proposition $4.11{ }^{[11]}$

A fuzzy matrix E is idempotent if and only if all its sections are.
Proof
Similar to proof of proposition 4.10.

Proposition 4.12

A fuzzy matrix N is nilpotent if and only if $N^{\alpha}, \alpha \in[0,1]$ is nilpotent.

Proof

Follows directly from $\left(N^{n}\right)^{\alpha}=\left(N^{\alpha}\right)^{n}$.

Definition 4.13

An $n \times n$ fuzzy matrix C is called circular if and only if $\left(C^{2}\right)^{\prime} \leqslant C$, or more explicitly, $c_{j k} c_{k i} \leqslant c_{i j}$ for every $k=1,2, \ldots n$.

Proposition 4.14

An $n \times n$ fuzzy matrix C is circular and reflexive if and only if it is similarity.
Proof
Suppose that C is circular and reflexive. Then $c_{i j}=c_{i j} c_{j j} \leqslant c_{i j}$. Also, $c_{j i}=c_{i i} c_{i i} \leqslant c_{i j}$. So, $c_{i j}=c_{i j}$ and hence C is symmetric.

Also, we have $c_{i j}^{(2)} \leqslant c_{j i}=c_{i j}$, i.e., C is transitive. Hence C is similarity.
Conversely, suppose that C is similarity. Then $c_{i j}^{(2)} \leqslant c_{i j}=c_{j i}$. Hence C is circular.

Proposition 4.15

An $n \times n$ fuzzy matrix C is circular if and only if all its sections are.

Proof

We have C is circular if and only if $\left(C^{2}\right)^{\prime} \leqslant C$ if and only if $\left(\left(C^{2}\right)^{\prime}\right)^{\alpha} \leqslant C^{\alpha}$ if and only if $\left(\left(C^{2}\right)^{\alpha}\right)^{\prime} \leqslant C^{\alpha}$ if and only if $\left(\left(C^{\alpha}\right)^{2}\right)^{\prime} \leqslant C^{\alpha}$.

Proposition 4.16

Let C be an $n \times n$ fuzzy matrix. Then C is compact if and only if all its sections are.
Proof
We have C is compact if and only if $C^{2} \geqslant C$ if and only if $\left(C^{2}\right)^{\alpha} \geqslant C^{\alpha}$ if and only if $\left(C^{\alpha}\right)^{2} \geqslant C^{\alpha}$.

Proposition 4.17

Let A be a regular fuzzy matrix with a g-inverse G, then A^{α} is regular with a g-inverse G^{α} for every $\alpha \in[0,1]$.

Proof
Since A is regular with g-inverse G, we have $A=A G A$.
Then $A^{\alpha}=(A G A)^{\alpha}=A^{\alpha} G^{\alpha} A^{\alpha}$. Hence A^{α} is regular and G^{α} is a g-inverxe of it.

The following example shows that the converse of the above proposition is not true in general.

Example 4.18

We consider the fuzzy matrix.

$$
A=\begin{array}{lll}
0.7 & 0.3 & 0 \\
0.3 & 0.7 & 0.3 \\
0.3 & 0.3 & 0.7
\end{array}
$$

Let the two sections
$A^{0.3}=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$ and $A^{0.7}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array} \quad\right.$ of A be regular with g-inverses
$G=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1\end{array}\right]$ and $I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right.$, respectively. Since $A^{0.3}>A^{0 .}$
we have $G>I$; i.e., G is reflexive
$1 \quad 1$
So, $A^{0.3} G A^{0.3}=\quad, \quad$ wich contradicts the regularity of $A^{0.3}$. 1
Hence A is not regular.

References

[1] Kim, K.H. and Roush, F.W., Generalized fuzzy matrices, Fuzzy Sets and Systems 4: 293-315 (1980).
[2] Hashimoto, H., Canonical form of a transitive fuzzy matrix, Fuzzy Sets and Systems 11: 157-162 (1983).
[3] Hashimoto, H., Decomposition of Fuzzy Matrices, Siam J. Alg. Disc. Math. 6: 32-38 (1985).
[4] Hashimoto, H., Reduction of a Fuzzy Retrieval Model, Information Sciences 27: 133-140 (1982).
[5] Hashimoto, H., Subinverses of fuzzy matrices, Fuzzy Sets and Systems 12: 155-168 (1984).
[6] Sanchez, E., Resolution of composite fuzzy relation equations, Inform and Control 30: 38-48 (1976).
[7] Hashimoto, H., Reduction of a Nilpotent Fuzzy Matrix, Information Sciences 27: 233-243 (1982).
[8] Dubois, D. and Prade, H., Fuzzy sets and Systems, Theory and Application, Academic Press, New York (1980).
[9] Kaufmann, A., Introduction to the Theory of Fuzzy Subjects, Academic Press, New York (1975).
[10] Hashimoto, H., Szpilarajn's theorem on fuzzy orderings, Fuzzy Sets and Systems 10: 101-108(1983).
[11] Hashimoto, H., Convergence of powers of a fuzzy transitive matrix, Fuzzy Sets and Systems 9: 153160 (1983).

بعض المــلحوظات على مقاطـــع المصفوفــة الفازيــة

تسم الرياضيات ، كلية العلوم ، جامعة الزتازيق ، الزتازيق ، مصر
 مذا البحث دراسة: العـلاتة بين المصفونة الفازية وبقاطعها ، كا نُعرف الأنكار التالية للمصفونة الفازية : α-irreflexive, strongly irreflexive and circular fuzzy matrix.
نعطي في القسم الاورل من مذا المقال ، معدمة نُعرُن فيها اللصفوفة الفازية والفرق بينها وين المصوفة البولينية Boolean matrix ، ونشير الم ما سوف ندرسه في مذا البحت .
وفي القسم الثاني ، نذكر بعض التعاريف والنظريات الالاساسية المجودة في المراجع والتي سون نستخدهيا خلال مذا المقال .

في التسّم الثالث ، نتدم العديد من خصائص الصصفونات الفازية (مع البرماذ) ومدى انتفال هذه الثصائص إلم الماطع .
في التسم الرابع ، نبرهن العديد من العلاگات بين اللصفوفة ومقاطهعا من حيث الأنكار المختلفة المعرةة للمصفونة الفازية ، مثل الانعكاس والتالّالٌ والنقل وضد الانعكاس وضد الكاتلّ

